Identities and exponential bounds for transfer matrices
نویسنده
چکیده
Abstract. This paper is about analytic properties of single transfer matrices originating from general block-tridiagonal or banded matrices. Such matrices occur in various applications in physics and numerical analysis. The eigenvalues of the transfer matrix describe localization of eigenstates and are linked to the spectrum of the block tridiagonal matrix by a determinantal identity. If the block tridiagonal matrix is invertible, it is shown that half of the singular values of the transfer matrix have a lower bound exponentially large in the length of the chain, and the other half have an upper bound that is exponentially small. This is a consequence of a theorem by Demko, Moss and Smith on the decay of matrix elements of inverse of banded matrices.
منابع مشابه
The exponential functions of central-symmetric $X$-form matrices
It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...
متن کاملLower Bounds of Copson Type for Hausdorff Matrices on Weighted Sequence Spaces
Let = be a non-negative matrix. Denote by the supremum of those , satisfying the following inequality: where , , and also is increasing, non-negative sequence of real numbers. If we used instead of The purpose of this paper is to establish a Hardy type formula for , where is Hausdorff matrix and A similar result is also established for where In particular, we apply o...
متن کاملCapacity Bounds and High-SNR Capacity of the Additive Exponential Noise Channel With Additive Exponential Interference
Communication in the presence of a priori known interference at the encoder has gained great interest because of its many practical applications. In this paper, additive exponential noise channel with additive exponential interference (AENC-AEI) known non-causally at the transmitter is introduced as a new variant of such communication scenarios. First, it is shown that the additive Gaussian ch...
متن کاملGenerating Matrix Identities and Proof Complexity Lower Bounds
Motivated by the fundamental lower bounds questions in proof complexity, we investigate the complexity of generating identities of matrix rings, and related problems. Specifically, for a field F let A be a non-commutative (associative) F-algebra (e.g., the algebra Matd(F) of d × d matrices over F). We say that a non-commutative polynomial f(x1, . . . , xn) over F is an identity of A, if for all...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013